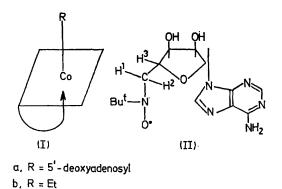
441


Light-induced Anaerobic Co^{III}-C Homolysis of Aqueous Vitamin B₁₂ Coenzyme or of Ethylcobalamin; Spin-trapping of the 5'-Deoxyadenosyl or Et Radical

By KEITH N. JOBLIN, ALAN W. JOHNSON, MICHAEL F. LAPPERT,* and BRIAN K. NICHOLSON (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Irradiation of vitamin B_{12} coenzyme or ethylcobalamin (LCo^{III}-R) in the presence of a nitroso compound R'NO (R' = Bu^t or 2,3,5,6-Me₄C₆H) under anaerobic conditions in H₂O (R' = Bu^t), Me₂SO, or PhOH-CHCl₃, affords the spin-trapped nitroxide R'N(\dot{O})R.

WE report e.s.r. results on the photolysis of vitamin B_{12} coenzyme (Ia) [and on the related compound ethylcobalamin (Ib)] in an aqueous medium which demonstrate unequivocally that light-induced homolysis of the Co^{III}-R bond occurs with formation of the 5'-deoxyadenosyl (or Et) free radical as well as vitamin B_{12r} (a Co^{II} corrinoid). These have implications for the mechanism of B_{12} -dependent biological isomerisations,¹ and studies using similar techniques are in hand to ascertain whether there is a parallel with the substrate-induced enzymatic reactions.

Irradiation (Pyrex-filtered light from a 250 W highpressure mercury lamp) of a deoxygenated mixture of (Ia) (10^{-3} M) and Bu^tNO (10^{-2}M) in water at 50° in the cavity of an e.s.r. spectrometer produces the signal of spin-trapped 5'-deoxyadenosyl radical Bu^tN(O)R (R = 5'-deoxyadenosyl), (II) (see Figure and Table). Ethylcobalamin (Ib)

behaves similarly, giving Bu^tN(O)Et. The mode of Co-C cleavage appears to be solvent independent; thus irradiation

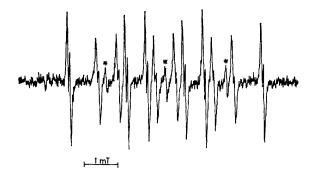


FIGURE. E.s.r. spectrum of $Bu^{t}N(\dot{O})R$ (R = 5'-deoxyadenosyl) in H₂O at 50°. Peaks marked* are due to Bu_2^tNO .

of (Ia) or (Ib) in either $PhOH-CHCl_3$ (1:1) or the aprotic solvent Me₂SO, in the presence of nitrosodurene as spin-trap, similarly afforded the nitroxide ArN(O)R (see Table). In each experiment, the B_{12r} moiety was characterised by a broad e.s.r. signal at g ca. 2.2, upon freezing the irradiated sample to 173 K.

TABLE

E.s.r. parameters^a of the nitroxides $R'N(\dot{O})R$

R′	R	a(N)	$a(\mathrm{H}^{1})$	$a(\mathrm{H}^2)$	$a(\mathrm{H}^3)$
Butb	5'deoxyadenosyl	1.64	1.41	0.81	0.06
Arc	"	1.49	1.49	0.76	е
Ard	"	1.38	1.59	0.56	е
Butb	Et	1.71	1.13^{1}		
Are	**	1.51	1.26^{t}		

^a At 50°C, coupling constants in mT. ^b In H₂O. ^c In CHCl₃-^d In Me₂SO. ^e Not resolved. ^f H¹=H², giving phenol (1:1). 1:2:1 triplet.

The nitroxides derived from (Ia) were unambiguously identified by the form and line-width variations in the e.s.r. spectrum (see Table). It has been shown that α -methylene protons (H¹ and H²) of a nitroxide with a β -optically active chiral centre R'N(\dot{O})CH₂CXYZ (X \neq Y \neq Z) are magnetically non-equivalent and thus give rise to a 1:1:1:1 quartet, with selective broadening of the inner pair,² rather than the 1:2:1 triplet observed when the β -carbon atom is not chiral. Furthermore, the spectrum of ButN(O)R (R = 5'-deoxyadenosyl) shows a small splitting attributable to hyperfine coupling with the hydrogen (H³) on the β -carbon atom.

(Received, 3rd April 1975; Com. 382.)

¹ Cf. D. Dodd and M. D. Johnson, J. Organometallic Chem., 1973, 52, 1; H. A. O. Hill, in 'Inorganic Biochemistry,' ed. G. I. Eichhorn, Elsevier, Amsterdam, 1973, Vol. 2, 1067; D. J. Cardin, K. N. Joblin, A. W. Johnson, G. Lang, and M. F. Lappert, Biochem. Biophys. Acta, 1974, 371, 44, and references therein. ² C. Lagercrantz and M. Setaka, Acta Chem. Scand., 1974, B28, 619 and references therein.